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The rolling motion of a sphere on a smooth plane boundary in a simple-harmonic 
water motion has been analytically and experimentally investigated. For 
spheres having specific gravities ranging from 0-09 to 15.18 the sphere motion 
was found to be sinusoidal for both low and high values of the period parameter 
defined by Keulegan & Carpenter. The knowledge of the sphere motion, and 
hence the resultant force, allowed the determination of inertia and drag 
coefficients from Fourier-averaging techniques. Experiments in the inertial 
range yielded an added-mass coefficient of 1.2, compared with 0.67 from inviscid 
theory for translating spheres. For values of the period parameter greater than 
30 the drag coefficient is reported to be approximately 0-74. 

1. Introduction 
There is limited experimental and theoretical information available on the 

hydrodynamic forces on objects adjacent to a boundary in either steady or 
unsteady flow. The pressure distribution and the attendant resistance forces, 
lift and drag, are the principal desired quantities for steady flow past objects on 
or in dose proximity to a boundary. Unsteady flow situations, whether transient, 
pulsatile or oscillatory, require the determination of the inertial effects in addi- 
tion to those of resistance. Furthermore, unsteady flows can generate an addi- 
tional force that is related to the history of the motion, whether transient or 
oscillatory. 

It is of interest to have a knowledge of the hydrodynamic forces when assessing 
the fluid forces on sediment particles on a beach under shoaling waves, as re- 
ported by Eagleson & Dean (1961), or in the design of structures to be placed on 
the sea bottom. Other applications with or without boundary effects are the 
influence of pulsating flow on gas absorption in liquids, liquid-liquid extraction 
(Al-Taweel & Carley 1971), and vertical retardation of suspensions in tubes 
(Tunstall & Houghton 1968). The only known previous investigation of the 
rolling motion of spheres was conducted by Chan, Baird & Round (1974), who 
were prompted to do the studies to gain more knowledge on the transport of 
dense solids in conduits by the pulsatile flow of liquids. 
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I. 1. Steady flow 
The influence of a boundary on the steady fluid motion around spheres near a 
wall has been investigated analytically for very slow motion by Landenburg 
(1907), Faxen (1921) and McNown et al. (1948). More recently, the case of a 
sphere rotating parallel to a nearby plane wall in an otherwise still fluid was 
solved analytically for Stokes flow by Dean & O’Neill (1963). O’Neill(l964) also 
solved the equations for the related problem of a translating sphere. Goldman, 
Cox & Brenner (1967) attempted to approach thelimiting case of arotating sphere 
on a plane wall, but found that the sphere could not actually be in direct contact 
with the boundary, resulting in an actual slip. Over a range of Reynolds numbers, 
Carty (1957), whose results are also reported in Eagleson & Dean (1961), mea- 
sured the terminal velocity of spheres rolling down a plane boundary, providing 
the experimental values for a drag coefficient for rotating spheres on a plane 
boundary. Later Chan et al. (1974) conducted similar experiments in a conduit. 

1.2. Transient motion 
For the rectilinear transient motion of spheres the pioneering work by Basset 
(1910) for low Reynolds number flows proved that there exists a history term in 
addition to the inertia or so-called added-mass term. The influence of the history 
term and the validity of Basset’s theory has been verified by Brush, Ho & Yen 
(1964), Hjelmfelt & Mockros (1967), Mockros & Lai (1969), Waugh & Ellis 
(1969) and Hamilton & Lindell (1971). It has not been clearly established, how- 
ever, that the history term as defined by Basset is valid for large Reynolds 
numbers in transient flows, or oscillatory flows. 

1.3. Oscillatory motion 
Stokes (1851) integrated the Navier-Stokes equations to determine the viscous 
and inertia effects on oscillating spheres in an infinite and otherwise quiescent 
fluid. Wagenschein (1921) and Carstens (1952) experimentally corroborated 
Stokes’ theory in its range of validity. In  an unconfined medium the inertia and 
drag coefficients have been measured on a stationary sphere by Sarpkaya (1975) 
for higher Reynolds numbers. For the case of a sinusoidally oscillating sphere in 
a viscous liquid, Odar & Hamilton (1964) determined the history coefficient as 
well as the inertia coefficient. Upward pulsatile flows and the attendant suspension 
of solid particles have been investigated by Al-Taweel & Carley (1971) and 
Tunstall & Houghton (1968). The radial migration of suspensions in oscillatory 
flow in horizontal tubes was demonstrated by Shizgal, Goldsmith & Mason 
(1965). For spheres resting on a boundary, attempts at  the determination of the 
drag and inertia coefficients have been made by O’Brien & Morison (1952), 
Grace & Casciano (1969) and Garrison & Berklite (1973). The latter researchers 
experimentally and analytically determined the effect of the wall on the inertia 
or added-mass coefficients for high frequencies of oscillation. Although there 
have been numerous investigations on the hydrodynamics of oscillatory flow 
around rounded bodies, and limited attention to boundary proximity effects, 
the designer still experiences considerable difficulty in estimating forces on 
bodies in unsteady flow. 
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FIGURE 1. Definition sketch of sphere on boundary. 

This paper is concerned with the determination of the fluid forces, inertia and 
drag on spheres on a plane boundary in an oscillatory flow. A definition sketch of 
the sphere and fluid is provided by figure I. 

2. Experimental equipment 
2.1. U-tube 

All of the experimental data reported here were obtained using a large U-tube, 
a photograph of which is shown in figure 2 (plate I). Simple-harmonic water 
motion at the natural frequency of the system is produced by a feedback-control 
system. The flow passage in the test section B in figure 3 is 0.305 m high and 
1.21 m wide. The free-surface dimensions in each vertical leg are identical to 
those in the test section. Although a sand bed D is depicted in figure 3, a smooth 
aluminium plate constituted the entire floor of the test section for the rolling 
ball tests. Visual observation of any phenomena within the test section is possible 
by virtue of the transparent walls and top of the horizontal test section. Area C 
is simply a solid region bounded by streamlined plates. 

The system is designed to oscillate at various amplitudes at the resonant 
system frequency. Through conduit J a continuous supply of air from a variable- 
speed centrifugal blower supplies the pressure to force the corresponding water 
surface downward whenever the solenoid-operated exhaust valves E are closed. 
These exhaust valves are open while the water surface in that tank is rising, 
allowing for a short circuit of air from the conduit back through the valves. 
The phasing of valves E is controlled by a float F on the other water surface, and 
a direction-sensing switch H which actuates a timing circuit. 

An instantaneous record of the position of the steel rod G and the attached 
float P is determined by means of a linear-variable - differential - transformer, 
which is mechanically connected by wires and pulleys to the rod and cable 
system. The amplitude and period of oscillation were recorded on a direct- 
writing oscillograph. The natural period of the U-tube is 3.56 s. By changing the 
blower speed the water displacement 'in the test section can be continuously 
varied from 0 to 75 em. 
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FIQURE 3. Cross-section of U-tube. A ,  steel tanks; B, test section; C ,  streamlined inserts; 
D, sand bed; E, exhaust valve; F ,  float; G, steel rod; H ,  direction-sensing switch; I ,  blow- 
down and damping valve; J ,  air supply (1); K ,  air supply (2). 

Two methods have been used to ascertain the actual nature of the oscillatory 
water motion in the test facility. After construction of the facility, free oscillation 
tests were conducted to obtain the effective mass and the damping coefficient of 
the U-tube. Below an amplitude of 25 em the damping is definitely linear, result- 
ing in a value of the logarithmic decrement of approximately 0.09. For an 
assumed forced air pressure input represented by a rectified square wave, a 
Fourier series solution to the calibrated differential equation yielded no harmonic 
more than 0.1 % of the fundamental amplitude of the water motion. A harmonic 
analysis of the steady-state motion of neutrally buoyant particles in the middle 
of the test section confirmed the analytical predictions, yielding all other 
harmonics with amplitudes less than 1 yo. The boundary layer on the floor of the 
test section was observed to be laminar for the amplitudes of motion employed 
in these tests. For the fixed frequency of oscillation of the water motion and a 
representative water temperature the thickness of the so-called depth of penetra- 
tion of the oscillating Stokes layer is approximately 0-1 em from (2v/w)*, where 
v is the kinematic fluid viscosity and w the angular frequency. 

2.2. Sphere characteristics 

Sixteen different balls having specific gravities ranging from 0.09 (ping-pong) 
to 15-18 (tungsten carbide steel) were used as the test spheres. As shown in table 
I the magnitude of sphere diameters varied from 0.794 em to 5.636 em. The 
commercial ceramic and metal balls possessed a very high degree of roundness. 
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FIaum 2. View of U-tube. 
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2.3. Test procedure 

For the purpose of establishing a reference scale within the test section a thin 
transparent sheet of plastic with closely spaced dark lines was stretched tightly 
on part of the test section floor. Before each series of tests with an individual 
sphere the U-tube was emptied and a cover on the top of the test section was 
lifted off, allowing the test sphere to be placed on the aluminium floor. The air 
blower speed was preset to produce a steady-state amplitude of water displace- 
ment. Once steady-state conditions were attained the amplitude of the water 
motion X,, was visually observed from the motion of the rod G .  The amplitude 
of the displacement of the centre of the sphere X,, was obtained by using the 
reference lines on the adjacent plastic sheet. The ping-pong ball, which oscillated 
under the cover of the test section, was observed through the transparent top. 

In  some tests motion pictures of the rod motion and the sphere motion were 
taken. An incandescent light connected to the direction-sensing switch H 
allowed determination of the change in direction of the water. Independent 
filming of ball motion and rod motion with this light in view, which was off during 
one-half of the cycle and on during the remaining portion, provided for the 
measurement of the phase angle q5. 

A total of 55 runs were conducted using the 16 different spheres. Table 1 
provides a summary of the data in terms of the dimensionless parameters 
X,,/D and Xso/D, and the phase angle q5. Only for those 36 runs for which motion 
pictures were taken are values of q5 available. As discussed later the values of q5 
in table 1 were determined by performing a harmonic analysis of both the water 
motion and sphere motion records. 

3. Experimental results 

We employ dimensional analysis to formulate representative parameters for 
correlating the two measured quantities, X,, and q5, with the fluid properties, 
sphere characteristics and flow characteristics. The amplitude of sphere displace- 
ment X,, can be expressed as follows: 

3.1. Dimensionless parameters 

x,, =f[XfO,D,W, V,Pf,P,l ,  (3.1) 

where X,, is the amplitude of fluid displacement, D the sphere diameter, pr 
the mass density of the fluid and p,  the mass density of the sphere. One possible 
combination of dimensionless parameters is 

Defining V,, and KO as the respective amplitudes of the fluid and sphere velocities, 

(3.3) 

is referred to as a translational Reynolds number by Happel & Brenner (1965). 
42-2 
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FIGURE 4. Kinematical properties of fluid and sphere motion: 0 ,  measured values of xf; 

0, measured values of X,;  , fundamental from harmonic analysis. 
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0 5 10 I5 20 25 

XfOP 
FIGURE 5. Sphere amplitude vs. fluid amplitude for metal spheres : __ - - , best- 
fit curve through data; ___ , inviscid theory, CM = 0.67, pr = 7.73. Data: 0 ,  
pr = 7.73; O,pr = 8.89; O,pr = 15.18. 

The absolute-value sign is employed to preclude the presence of a negative 
Reynolds number in the event that X,, > X f  o. Another choice of dimensionless 
ratios might be 

where pr = ps/pf and S = wD2/v (3.5) 

is an occasionally used form of Stokes number, or a rotational Reynolds number 
according to Happel & Brenner (1965). The dependent quantity in (3.4) is 
related to what is frequently called the period parameter (Keulegan & Carpenter 
1958): 

(3.6) 

where T is the period of the oscillation. Numerical values of the two Reynolds 
numbers and the period parameter are listed in table 1 for all the runs. 

p = ~ ~ o - ~ o ~  T / D  = 2nIXfo-XsoI/D, 

3.2. Analysis of form of motion 

For all tests for which motion pictures were taken a detailed analysis of both the 
water motion and the sphere motion was possible. A total of 48 intervals per cycle 
of oscillation were chosen to reduce the data. A harmonic analysis of both motions 
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FIGURE 6. Sphere amplitude vs. fluid amplitude for other spheres: - - - , best-fit 
curve through data. pr:  0 ,  0.09; a, l e i6 ;  c) ,  1.19; 0, l-al; 8,  1-93; 0,  2-47; 0 ,  2.54; 
0, 3.95. 

provided information on the amplitude, phase and form of the respective dis- 
placements. A representative sample of the actual motion is depicted on figure 4 
for run 21, the 2.54 em stainless-steel sphere in a water motion corresponding to 
X,, = 22.9 cm. The data points are the actual values of X ,  and X ,  reduced from 
the motion pictures. Both the water motion and the sphere motion were found 
to be very close to sinusoidal by a Fourier analysis. The amplitude and phase of 
the fundamental sphere motion ascertained from the harmonic analysis compared 
favourably with the values calculated from visual observations. 

Assuming the motion to be simple harmonic the other kinematic characteristics 
of the sphere motion, and a,, were calculated accordingly and plotted on figure 
4. The velocity difference 5- is also included to demonstrate that the relative 
velocity, and the drag force, actually lead the water velocity 5. 

3.3. Sphere amplitude 

The ratio of sphere displacement to its diameter X,,/D is correlated with the 
ratio X,,/D for various density ratios pr in figure 5 for metal spheres, and in 
figure 6 for the remaining ones. The Stokes number, which ranged from 119 to 
6015, could not be correlated with the results, probably because it lies within the 
inertial range, This independence of the motion of the Stokes number is fairly 
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F I Q ~ E  7. Correlation of amplitude data with density ratio: - , Runge-Kutta 
numerical integration. pr: 0, 0.09; (3, 1.16; a, 1.19; 0, 1-41; 0,  2.47; 0, 2.54; 0, 3.95; 
0, 8.89; a, 15.18. 

obvious upon inspection of the results in figure 5 for the stainless-steel spheres 
For values of X,,/D of 6, 9.6 and 12 the ratios X,,/D are nearly equal for corres- 
ponding Stokes numbers of 305 and 1222, 119 and 477, and 305 and 687, respec- 
tively. Except for the lower range of the translational Reynolds number R, 
which varied from 720 to 14040, there is apparently no Reynolds number effect 
on the amplitude of sphere motions either. 

The effect of the mass density of the respective spheres is clearly shown in 
figures 5 and 6. For a given water motion and sphere diameter the denser balls 
experience a greater relative velocity and acceleration than the lighter ones. 
Clearly, as shown by the kinematical representation offigure 4, the fluid resistance 
force alternates from a motivating force to a retarding force during the cycle. The 
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correlation of the amplitude results with the density ratio is possible for constant 
values of Xro/D, as shown in figure 7 in terms of ( X f o  - Xso)/D vs. pr for values of 
X,,/L, = 3, 6 and 9. 

4. Theory 
We assume that the sphere shown on the plane boundary on figure 1 is im- 

mersed in a sinusoidally oscillating fluid and is allowed to roll. The equation of 
linear momentum is 

Fp + F’ + FM + F’ -FR = Msas, (4.1) 

where Fp is the pressure force associated with the pressure gradient required to 
oscillate the fluid, and FD is the horizontal component of the fluid resistance 
force, the so-called drag force. The term associated with the relative acceleration 
between the fluid and body is the added-mass or inertia force PM. The other two 
forces are the rolling friction FR and the force related to the history of the fluid 
motion Fn. Representing the inertia of the sphere is Ms, its mass, and a,, the 
instantaneous linear sphere acceleration. 

Actually, the rolling friction force can be eliminated from the analysis if the 
law of angular momentum is employed. If FH = 0 and the sphere is assumed to 
roll without sliding, the angular momentum equation about an axis through the 
centre of gravity of the sphere shown in figure I can be expressed as 

+DFR+(lD-+D)FD+(ZM-$D)F 

where lD and 1, are the location of the lines of action of the drag and inertia 
forces, respectively. We have assumed that the pressure force is applied through 
the axis of the sphere. The right-hand side of (4.2) is simply 

Using (4.2) and (4.3) we solve for Fx and substitute the result into (4.1), resulting 
in the relationship 

F , + ~ F ~ + % F ~  =%%as. (4-4) 

Although the difficulty in evaluating the force of rolling friction has been elimi- 
nated, (4.4) is intractable because of the unknown values of the lines of action 
lM and ID of the two forces F;M and FD. Equation (4.4) differs from (4.1) by the 
coefficients of FB and FM and the effect of the rotating inertia of the rofling 
sphere itself, as represented by $M,as. The fluid inertia term can actually be 
referred to as a rotational fluid inertia or rotational added mass. Since lo and I, 
are not easily determined they are set equal to SD in (4.4) for convenience, 
resulting in 

Equation (4.5) differs from (4.1) by the absence of FR, which was eliminated, by 
the fact that Fx was neglected, and by the inclusion of the rotating inertia of 

(4.5) Fp + FD + FM = iMsas. 
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the sphere itself. Moreover, the terms FD and FMinChde the effect of the respective 
moments of fluid drag and fluid inertia. Because of the form of FD and Faf in 
(4.5) the respective coefficients of drag CD and inertia CM embody these effects. 
Chan et al. (1974) begin with an expression similar to (4.5) by adding to (4.1) 
the rotational inertia term, which is 3 of the sphere mass times linear acceleration. 

Neglecting the influence of the wall boundary layer, which was in all cases 
considerably smaller in height than the sphere diameter, we define the kinematic 
properties of the fluid motion by 

X, = XfOsinwtJ (4.6) 

(4.7) 

(4.8) 

where t is the time. The fluid velocity becomes 

V, = dXf/dt = wXfo cos wt, 

af = di$/dt = - w2Xf sin wt. and the acceleration 

We represent the motion of the centre of mass of the sphere by X, for displace- 
ment, E for velocity and a, for acceleration. 

In  the absence of a wall boundary layer the pressure force is simply equal to 
the mass of displaced fluid Mf times the fluid acceleration. Equation (4.5) can 
then be expressed as 

Hf uf + C,,Mf (af - as) + +p CD inO2(V, - E) I V, - El = %2M,as, (4.9) 

in which C, and C&, are the effective drag and added-mass coefficients, respec- 
tively, for forces on a rotating sphere. The moment arms defined in (4.4) are 
lumped in CD and C,. Equation (4.9) can be written in terms of the unknown 
sphere displacement Xs as 

dt 

wXfocosot-- = --- ; Ps  d2Xs di21 p, a t 2  a 

4.1. Stokes flow 

c -  
For slow motion, for which 

Kv 
- D(J$-Ly 

(4.10) 

(4.11) 

equation (4.10) was apparently originally solved by Konig (1891). For this linear 
differential equation the resulting steady-state sphere motion is also sinusoidal : 

(4.12) 

where pr = ps/pf is the density ratio. The phase lag between sphere and fluid 
motion is 

(4.13) 

where (4.14) 
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The boundary proximity effect on fluid resistance and fluid inertia would be 
represented by K and C,,, respectively. For steady Stokes flow about a sphere 
in an infinite medium K = 24. As demonstrated by Stokes (1851), K is a function 
of S in oscillatory flow. For spheres rolling down a plane boundary at a terminal 
speed Carty (1957) found K = 215. Probably because of blockage effects Chan 
et al. (1974) measured K = 260 for the terminal condition of spheres rolling in 
tubes. The inertia or added-mass coefficient C, has a value of 0-5 for potential 
flow about a sphere in an infinite medium, but is a function of S in oscillatory 
Stokes flow. Experimentally and analytically Garrison & Berklite (1973) deter- 
mined CM = 0-67 for a stationary sphere in contact with a plane boundary. If 
K and CM are constant in viscous motion then the ratio of sphere to fluid amplitude 
is independent of fluid amplitude, as shown by (4.12). The corresponding repre- 
sentation of (4.12) on figures 5 and 6 would be straight lines through the origin. 
The general curved form of all empirically determined lines on the graphs indi- 
cates that the drag law is nonlinear. For the stainless-steel balls the data do tend 
to approach the origin asymptotically, however. Clearly the data on figures 5 
and 6 are inertia dominated for low values of X,,/D and drag dominated for 
high values. 

4.2. Inviscid flow 
In  the case of an ideal fluid motion, for which p = K = 0, the phase angle q5 = 0, 
and, from (4.12), 

- -  xs - '+'M sinot, (4.15) 
XfO h + C M  

as derived by Rschevkin (1963). 
For the higher values of 8 for the stainless-steel balls, for which X, o/D is small, 

the viscous solution (4.12) degenerates to (4.15) because of the small values of p.  
Therefore, for values of X f o / D  < 6 the inertia forces dominate and govern the 
motion. As X, o/D is increased above a value of 6 the nonlinear drag force begins 
to increase, resulting in values of X,,/X, increasingly greater than the constant 
values predicted by (4.12) or (4.15). The straight-line inviscid solution on figure 
5 for the stainless-steel balls for C,, = 0.67 (Garrison & Berklite 1973) suggests 
that the inertia coefficient could actually be determined solely by the amplitude 
ratio if the ratio X ,  o/D is small enough. 

4.3. Nonlinear drag and turbulent flow 

Neither the inviscid solution (4.15) nor the linear viscous solution (4.12) is 
valid in situations for which the nonlinear drag is a significant force. Houghton 
(1963) states that complete solutions to the so-called nonlinear Langevin equa- 
tion (4.10) exist only if the sign of the drag term does not change during the 
cycle, a fact that is never true for the current investigation. Under certain condi- 
tions of oscillating flow in the vertical direction, for which levitation of solid 
particles in an upward flow is possible (Houghton 1966,1968; Tunstall & Hough- 
ton 1968), exact and approximate solutions can be effected (Houghton 1966, 
1968). Numerical solutions are possible with or without these restrictions, of 
course. 
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Inasmuch as the actual observed sphere motion X s  was nearly simple harmonic 
the resultant inertia of the sphere $Nsas, or the right-hand side of (4.9) or (4.10), 
is known. Let us now define the kinematics of the sphere motion to be 

X ,  = Xso sin (wt - $1, 
= wx,, cos (wt - $), 

a, = - w2Xso sin (at - $). 

(4.16) 

(4.17) 

(4.18) 

Equation (4.10) can then be written as 

1 (1 +c,) sinwt -c$,- xso sin (wt-  $1 - w x f o [  cos wt-  X S O  - cos (wt - 9) 
XfO 4 D D  XfO 

(4.19) 

As the right-hand side of (4.19) is known, the technique of Fourier-averaging, 
initially applied to forces on piles by Morison et al. (1950), and later thoroughly 
explained by Keulegan & Carpenter (1958), can be employed to determine 
values of C, and C,. If the measured force on a stationary body is F, then the 
Fourier-averaged force coefficients for a sphere are (Sarpkaya 1975) 

and 

(4.20) 

(4.21) 

where 6’ = 2 n t / T .  Equations (4.20) and (4.21) are only valid in this form if one 
motion, either fluid or sphere, is absent. In  this study the relative motion com- 
plicates the analysis somewhat. 

Instead of integrating (4.19) to produce results exactly analogous to (4.20) and 
(4.21) we express (4.19) in a simpler form 

XSO X 
- ($p,+ C,)- sin (wt - 9) + (1  +CM) sin wt = SC fo Xf 0 4 D D  

A2 cos (wt-a)lcos (o t -a) ] ,  (4.22) 

where A is proportional to the relative motion, 

A2 = 1 - 2(Xs0/XfO) COB $ + [xso/x,012, (4.23) 

and 
(4.24) 

where a: is phase lag between the velocity difference and 5, as shown on figure 4 .  
For the simple-harmonic water and sphere motion the effective Fourier-averaging 
is accomplished by (i) multiplying (4 .22)  by sin (wt -a) and integrating from 
t = 0 to t = T ,  resulting in 
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P =  

FIGURE 8. Fourier-averaged drag coefficient ws. period parameter. @, nylon I; 0 ,  plastic; 
@, nylon 11; 0,  billiard; 0,  glass; 0 ,  blue glass; 0,  stainless steel. 

0 

0 

FIGURE 9. Fourier-averaged added-mas moment of inertia coefficient TJS. period parameter. 
(Symbols as in figure 8.) 
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Step (ii) is effected by multiplying (4.22) by cos (wt -a) and integrating over the 
same interval, in this instance producing the averaged drag coefficient 

Theoretically, if the motion can be described by the force equation (4.10) and 
if the amplitude ratio Xs0/Xf  and the phase angle q5 of the motion are determined 
experimentally (from which A and a are easily calculated), C, and C, can be 
calculated, from (4.25) and (4.26), respectively. 

4.4. Drag coefficient 
As demonstrated by Keulegan & Carpenter (1958) and Sarpkaya (1975) the un- 
steady drag coefficient can be correlated with a period parameter P in the absence 
of any Reynolds number effects. The results of this analysis are shown in figure 8 
for those tests for which the motion is essentially drag dominated. No data are 
included for .Xfo/D = 3 because the drag force was too small to permit an accurate 
determination of c,. For P > 30 the average value of c, is 0-74, compared with 
a range of values from 1-2 to 0.8 reported by Carty (1957) for the same Reynolds 
number range (820 < (V,,-E0)D/v < 8840 for figure 8).  Chan et at. (1974) 
conducted terminal rolling speed tests similar to those of Carty, but found some 
deviations from his results, probably because they rolled spheres down a tube 
rather than down a plane boundary. It would be desirable to compare the values 
of C, on figure 8 with those determined by Chan et al. (1974), but it is not possible 
by Fourier-averaging as they did not measure the phase angle q5 during their 
oscillatory tests. Apparently the wall boundary layer had virtually no effect on 
the fluid drag over the drag-dominated region (P > 30) as C, remained nearly 
constant for ratios of the boundary-layer depth of penetration to the sphere 
diameter from 0.04 (P = 38) to 0.12 (P = 80.2). 

4.5. Added-mass coefficient 
For the lower values of X f  o/D and P it  is clear from the data on figures 5 and 6 
compared with (4.12) or (4.15) that the sphere motion is dominated by the fluid 
inertia. The Fourier-averaged values of C, from (4.25) are shown on figure 9 
onIy for P < 30. There is considerable scatter because of the sensitivity of CM 
to the phase angle 4, which could be accurately measured only to several degrees. 
It is obvious, however, that the rotational fluid effects are influencing the results, 
as nearly all values of C,, are greater than the theoretical one of 0.67 for a sta- 
tionary or translating sphere (Garrison & Berklite 1973). 

An added-mass moment of inertia exists because of the so-called attached fluid 
in the sphere boundary-layer. Lamb (1932) determines the magnitude of the 
torque on an oscillating sphere in an infinite medium by neglecting the convective 
acceleration terms. The coefficient of the torque term that is proportional to 
angular acceleration is the added-mass moment of inertia 

4 + (25)4 
4 + (2S)+ + S' 

I = 2MfRz  (4.27) 
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For large values of S 

If a coefficient of added-mass moment of inertia C, is introduced, i.e. 
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I = (242) MfR21JS. (4.28) 

(4.29) 

then = (5 J2)JJa. (4.30) 

Indeed, the solution for a sphere rotating on a plane boundary at high values of 
the Reynolds number and Stokes number would not yield the same result as 
(4.30). An order-of-magnitude effect can be demonstrated, however, by relating 
(4.29) to the rotational inertia of the sphere itself as the attached fluid can be 
envisaged as moving with the body. The ratio of (4.29) to $MsR2 is CI/pr.  For the 
experimental results depicted on figure 9 this ratio varies from 0.03 to 0.17. No 
attempt was made to incorporate this effect in the determination of C, because 
of the lack of a solution for I that includes wall effects. 

The difficulty in accurately determining C,, and to a lesser degree C,, from 
(4.25) and (4.26) is partially due to the fact that (4.10) is based upon the following 
assumptions: (i) the nonlinear drag law has an exponent of two, (ii) the drag force 
is in phase with the relative velocity, (iii) the inertia or added-mass force is in 
phase with the relative acceleration between water and sphere, (iv) the history 
or Basset term is negligible, and (v) the rolling friction force is adequate to pre- 
vent sliding. Although the use of a variable drag coefficient during numerical 
integration was considered, a constant exponent of two in the drag law was 
employed because of the relatively large Reynolds numbers and the lack of good 
experimental data. This approach was exercised by Chan et al. (1974)) but the 
use of steady-flow (terminal speed) data in an oscillatory flow field is itself ques- 
tionable. Although the drag force is by definition in phase with the relative 
acceleration, it is realized that history effects could cause deviations therefrom. 
Houghton (1966) has demonstrated that a phase lag exists between the added- 
mass term and the relative acceleration term because of viscous or history 
effects. 

4.6. History or Basset term 
The importance of the history of the relative acceleration to the rectilinear tran- 
sient motion of spheres was first recognized by Basset (1910) for low Reynolds 
number flow. Recently, however, Mockros & Lai (1969) have demonstrated 
that Stokes theory and the history term as defined by Basset are valid up to  
much greater terminal Reynolds numbers than would correspond to the limit 
of the theory for steady flow. For steady-state oscillatory motions in the Stokes 
or viscous regime the Basset term is well known for a sphere, containing both 
acceleration- and velocity-dependent terms. For transient motions and non- 
repetitive oscillatory or pulsatile motions, the Basset term is introduced to 
account for deviations of the motion from steady state. The importance of the 
Basset term for oscillatory flows a t  high Reynolds and Stokes number is not at 
present known. Odar & Hamilton (1964) calculated the magnitude of the history 
term from experiment for an oscillating sphere, but only after assuming a value 
of C,, which itself was not known apriori. Although they demonstrated that the 
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Basset definition of El' can be applied to oscillatory flows up to a Reynolds 
number of 62, it was neglected here because of the much higher values. Al- 
Taweel & Carley (1971) showed by an approximate analysis that neglect of the 
history term should cause only a small error if S 40. Most authors (notably 
Chan et al. 1974; Houghton 1963, 1966; Tunstall & Houghton 1968) have neg- 
lected the Basset term in their analyses of oscillatory and pulsatile flows. It is 
not unreasonable to speculate that the history term influences the rotational 
fluid effects more than the translational ones, as discussed earlier. 

4.7. Rolling friction 
Although P' was eliminated in the derivation of (4.5) its presence is necessary 
for maintaining rolling of the sphere. If only sliding occurred, as has been con- 
jectured by Goldman et al. (1967) and others, the rotating sphere inertia term in 
(4.2) would be altered. They postulated that a sphere may not even be in direct 
contact with the boundary because of the high local shear or lubrication force 
at the point or surface of contact. Analysis of the movement of one marked ball 
from motion pictures resulted in an identical number of observed and calculated 
rotations. In fact, all balls were observed to rotate continuously. 

For extremely low amplitudes of motion (Xfo/ .D < 1) the friction force on the 
ball would inhibit its motion until a threshold value of Xf , /D was attained, 
beyond which a smooth rolling motion prevailed. This phenomenon was also 
observed by Chan et al. (1974), who reported threshold values of X,, and X,,. 
Halow (1973) reports that the incipient angle required to initiate rolling of a 
sphere down an inclined plane is of the order of 5". Only in the case of the ping- 
pong ball can it be demonstrated on the basis of Halow's data that the rolling 
friction force was not adequate to preclude sliding. 

5. Numerical analysis 
The relative importance of the inertia and drag forces in (4.5) can be demon- 

strated by numerical integration of (4.10) in terms of %. A fourth-order Runge- 
Kutta technique was employed, using 200 intervals of integration per cycle of 
oscillation. By starting the integration process with the sphere at  rest the desired 
steady state was only attained once the transients completely decayed, which 
always occurred after ten cycles. We applied Simpson's rule to integrate for 
the sphere displacement X,. 

If either C, or C, in (4.10) is known then the other one can be optimized by 
integrating for X,, until the calculated and measured values agree. The optimiza- 
tion in terms of q5 is not nearly as successful because of the sensitivity of the 
solution to #. 

To optimize for C, an average value of C, = 1-2 from figure 9 is inserted into 
(4.10). For large values of P the solution is very sensitive to changes in C,, as 
shown by the two examples on figure 10. For P > 30 all optimized values of C, 
in terms of amplitude agreement (figure 10) yield an arithmetic average equal 
to 0.74, identical to the mean Fourier-averaged value. This means that, for large 
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FIUURE 10. Influence of Co on numerical integration: pr = 7.73. 

relative displacement of sphere and fluid, the determination of C, from (4.26) 
is not too sensitive to small inaccuracies in +. 

We can also employ the numerical integration to perform a sensitivity analysis 
on either C, or C,. Figure 10 in essence exhibits the sensitivity of the motion to 
changes in C,. The sensitivity of X ,  and + to C, should depend upon the value 
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of P. In the inertia-dominated region (P < 30) the characteristics of the sphere 
motion are shown in figure 11 for 0.6 < C, < 1.4. We assumed C, = 1.45 from 
figure 8 for the value of P = 7.5. It is clear that the phase angle 4 is more sensitive 
to changes in C, than X,,, explaining to some extent the scatter on figure 9, 
the results of which are based upon Fourier-averaging . 

Using C, = 1.2 and basing C, on a best-fit relationship through the data on 
figure 8 a comparison of the measured values of (Xfo-Xso) /D vs. p,, on figure 7 
can be effected. The theoretical lines on figure 7 suggest that the amplitude of 
the sphere motion can be reasonably well predicted from (4.10). Furthermore, 
the agreement is also good for values of p,, for which C, and C, were not calcu- 
lated from (4.20) and (4.21) because there were no data for 4. 

6. Conclusions 
Provided that the friction force between sphere and plane boundary precludes 

any sliding motion, inertia and drag coefficients can be determined from analysis 
of relative motion between sphere and fluid. Although both the Stokes number and 
the Reynolds number were high the drag force is small for sphere displacements 
less than about six diameters, allowing for the determination of C,. Under these 
conditions the added-mass coefficient could even be approximated by Rschevkin’s 
inviscid solution if the ratio of sphere amplitude to fluid amplitude were known. 
The rotational effect of the fluid causes the inertia coefficient to be higher for 
rotating spheres (CM = 1.2) than for stationary or translating spheres (C, = 0-67). 

The drag force governs the motion for large values of X,,/D, allowing the 
determination of C,. If the period parameter P > 30, C, was determined to be 
0.74 from both Fourier-averaging and numerical analysis, a value somewhat 
lower than for rolling balls in unidirectional motion. 
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